

CHEM3065 Synthesis and Reactive Intermediates

O'Duill lecture 1 miriam.oduill@nottingham.ac.uk

How is the course structured?

Lectures

- Thu, 11 am: Miriam O'Duill Organometallic chemistry
 Fri, 11 am: Rob Stockman
- Attendance recorded via QR code
- Lecture recordings and slides provided on Moodle
- Don't fall behind!

Tutorials

- In person, tutorial question sheets on Moodle
- Check your timetables

Labs

- In person
- Check your timetables and groups

Expectations

What I expect of you

- Attendance of lectures and tutorials
- Self-study:
 - a 10-credit course requires on average
 100 hours of study
 - go over lecture notes
 - attempt practice questions
 - recommended reading:
 Clayden, Organic Chemistry, 2nd edition (available as an e-book on the library website):

https://ebookcentral.proquest.com/lib/nottingham/reader.action?docID=1591368

What you can expect of me

- Lecture material provided on Moodle in a timely fashion
- Short practice questions throughout to consolidate material and prepare you for exams
- Answers to questions in class or by email: university can be hard, so don't be afraid to ask for support!

Course Overview

Part 1: Stoichiometric Organometallic Chemistry (Clayden, Chapter 9)

Part 2: Transition Metal Catalysis (Clayden, Chapter 40)

Important:

• We will be building on foundations laid in 1st and 2nd year – you need to be familiar with your fundamental organic chemistry!

Lecture 1: Introduction to organometallic reagents

Structure, synthesis, stability and reactivity of organometallic reagents (R-M)

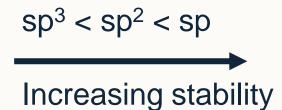
Learning outcomes

In this lecture, you will learn to:

- Identify organometallic reagents;
- Describe their structure and reactivity with electrophiles and proton sources;
- Synthesise organometallic reagents by oxidative addition;
- Identify the features that affect the stability of organometallic reagents.

Recommended Reading: Clayden, Organic Chemistry, Chapter 9

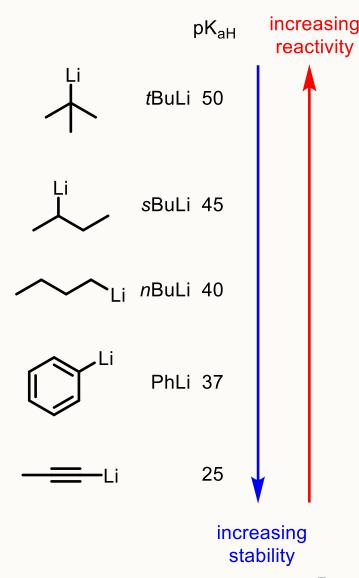
Structure of organometallic reagents


- Organometallic compounds contain a carbon—metal bond.
- Carbon is more electronegative than the metal, so the bond is polarised towards carbon, making the carbon nucleophilic.
- The more electropositive the metal, the more ionic the bond:

δ^+ δ^- / M — C	MeK	almost completely ionic only stable in solution, will catch fire in air not stable to water
	MeMgBr	Fairly covalent highly reactive, stable in solution not stable to water
δ^{-} δ^{+} CI—C—	Me ₄ Sn	completely covalent very stable, can be purified and isolate doesn't react with water

Factors affecting the stability of Organometallics

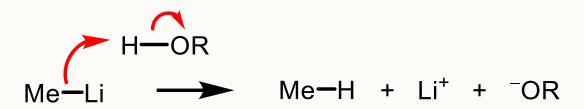
- The metal (see previous slide)
- The nature of the carbon:



(The negative charge on C is more stabilised in orbitals with higher s character: closer to nucleus)

• For sp³ carbons:

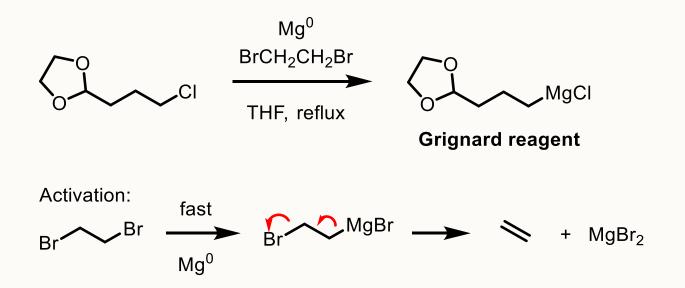
(Inductively electron-donating alkyl groups destabilise the negative charge on C)


pK_{aH} can be used as a guide to reactivity/stability:
 The lower the pK_{aH}, the more stable the organometallic.
 (But: most organometallics are highly reactive.)

Factors affecting the stability of Organometallics

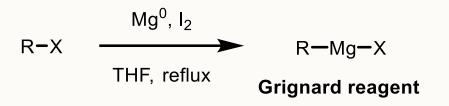
- Organometallics are highly reactive (very unstable).
- Practical considerations: Organometallics
 - are nucleophilic and basic: need to use aprotic solvents (e.g. THF, Et₂O, Hex)
 - react with O_2 : need to use an inert dry atmosphere such as N_2 or Ar.
 - react rapidly and violently with H₂O: need to be kept absolutely free of moisture.

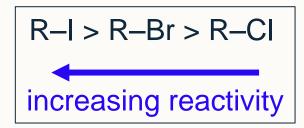
Reactivity of Organometallic Reagents


- When we take the necessary precautions, organometallics are very useful reagents: they are nucleophilic on carbon and react with a variety of electrophiles.
- Revision: reactivity of Grignard reagents:

Organometallic compounds are **nucleophiles**.

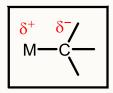
Synthesis of Organometallics: Grignard reagents


- Grignard reagents are made by oxidative addition of Mg⁰ into a C-halogen bond.
- These reactions are fairly slow and often require heating.
- If the surface of the Mg⁰ turnings is partially oxidized, the Grignard reaction can be slow to initiate. To help activate the reaction, we can add I₂ or 1,2-dibromoethane:



Synthesis of Organometallics: Grignard reagents

Order of reactivity towards oxidative addition:



- But: chlorides (R–Cl) are often cheap, and the by-product (MgCl₂) is insoluble and therefore easy to remove.
- Alkyl iodides sometimes undergo an unwanted side-reaction (Wurtz coupling):

Summary

In this lecture, you learnt

what organometallic reagents are and how they react;

- nucleophilic on carbon: react with electrophiles
- strong bases: easily destroyed by very weak acids
- how to make them by oxidative addition;

$$M^0$$
 $(Mg \text{ or Li})$
 $R-MgX$
 $X = I > Br > CI$
 $Ox. addn.$
 $R-Li$
 $Slow, requires heating$

the factors that affect their stability.

The negative charge on carbon is stabilised by:

- $sp > sp^2 > sp^3$
- $sp^3: 1^{\circ} > 2^{\circ} > 3^{\circ}$
- conjugation, coordinating heteroatoms, α -heteroatoms

Practice questions

- 1. Which of the following solvents are suitable for organometallic reactions, and which are not?
 - ethyl acetate, acetonitrile, THF, hexane, methanol, Et₂O
- 2. Draw a curly arrow reaction mechanism and product for the following reaction:

Lecture 2: Synthesis and reactivity of organometallics

Transmetallation, organocuprates, ortho-lithiation

Learning outcomes

In this lecture, you will learn:

- how to synthesise organolithium reagents by halogen-lithium exchange
- how to synthesise organolithium reagents by deprotonation (ortho-lithiation).

Recommended Reading: Clayden, Organic Chemistry, Chapter 9

Synthesis of Organometallics: Halogen-Lithium exchange

- Organolithium compounds can be made by oxidative insertion of Li⁰ into a C—
 halogen bond. These reactions are slow and require heating.
- They can also be made by halogen-lithium exchange, where a C-Hal bond exchanges with a C-Li (if it generates a more stable C-Li species). These reactions are fast and occur at low temperatures:

Oxidative insertion

Halogen-lithium exchange

Factors affecting Hal-Li exchange

To understand if a Hal–Li exchange is possible, we need to know the stability of the product C–Li:

- $sp > sp^2 > sp^3$
- $sp^3: 1^{\circ} > 2^{\circ} > 3^{\circ}$
- Conjugation increases stability:

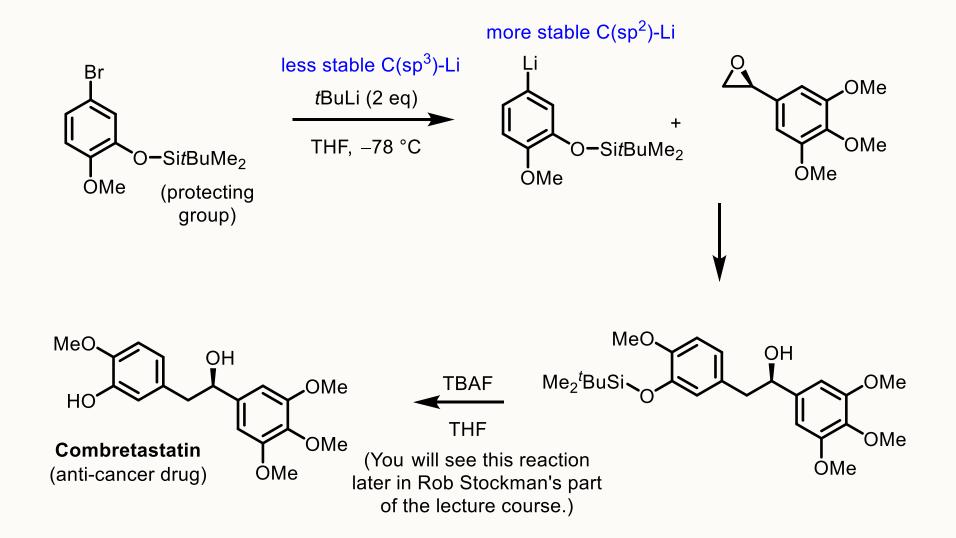
Internal heteroatom co-ordination increases stability:

• α-heteroatom stabilization:

How much BuLi is necessary?

With *t*BuLi, we can get a secondary process happening, and thus we use 2 equivalents to overcome this.

$$Ar \xrightarrow{Li} Ar \xrightarrow{Li} + Br \xrightarrow{H} + LiBr$$

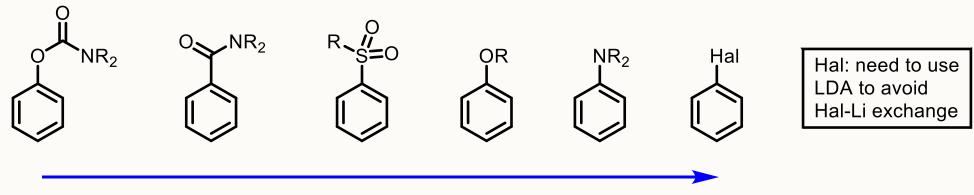

$$2nd equiv.$$

ArLi is basic: it can react with tBuBr.

We use a second equivalent of *t*BuLi (more reactive than ArLi) to eliminate HBr and prevent the decomposition of ArLi.

An example from the pharmaceutical world

Ortho-lithiation (deprotonation) of aryl rings


- We can also make organolithium reagents by deprotonation of C H bonds. A strong base (BuLi or LDA) is necessary.
- Directing groups (DG) enable regioselective ortho-lithiation (deprotonation of aromatic C— H bonds):

You have already seen this in second year (CHEM2010)

Ortho-lithiation (deprotonation) of aryl rings

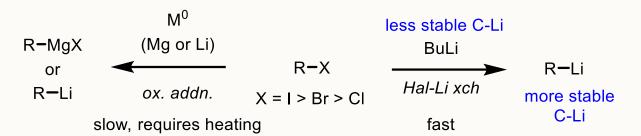
Directing groups for ortho-lithiation have heteroatoms that can coordinate to lithium:

decreasing directing groups ability / strength

We cannot use functional groups that would react with BuLi (esters, ketones, etc.)

Two directing groups in ortho-lithiation

Reinforcing: both groups direct to the same position


Competing: the stronger directing group 'wins'

Summary

In this lecture, you learnt:

how to synthesise organolithium reagents by Hal–Li exchange;

Driving force: formation of a more stable C–Li species from a less stable C–Li species.

 how to synthesise organolithium reagents in a regioselective manner by deprotonation of aromatic C – H bonds (ortho-lithiation).

Practice questions

1. Predict whether the following transformations will proceed:

2. Predict the products of the reactions of **A**, **B** and **C** with BuLi and CO₂:

$$A$$
 B C MeO C MeO C C

Lecture 3: Synthesis of organolithium reagents II

Organolithium synthesis by deprotonation (part 2)

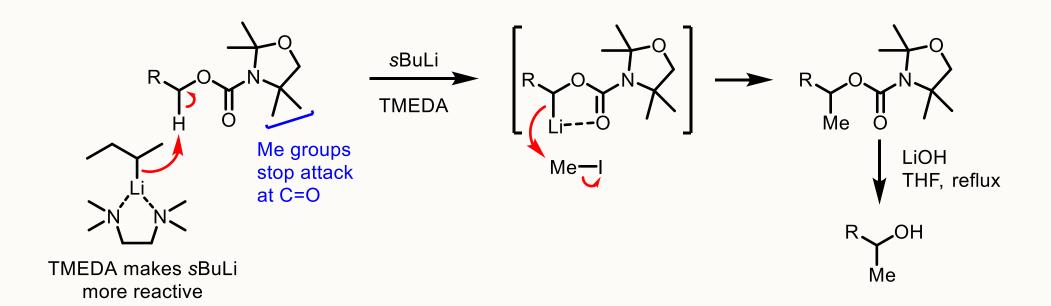
Learning outcomes

In this lecture, you will learn:

- how to make organolithiums by deprotonating acidic protons (e.g. alpha to heteroatoms, enolates),
- how to generate "superbases" for the deprotonation of weakly acidic protons.

Recommended Reading: Clayden, Organic Chemistry

Lithiation α to Heteroatoms: Oxygen


We have seen directed lithiation of aromatics:

Similar reactivity can be observed at other C(sp²)—H bonds, e.g. alkenes:

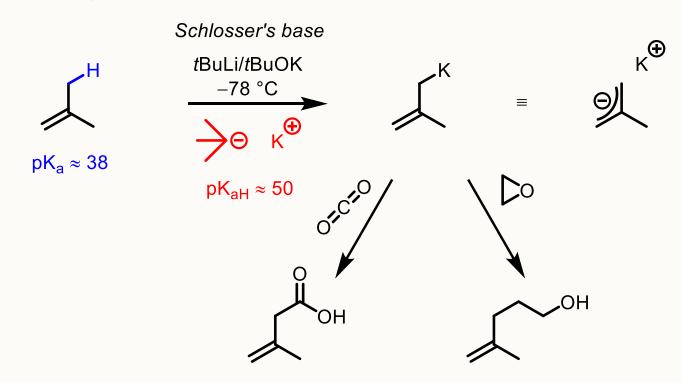
Lithiation α to Heteroatoms: Hoppe Lithiation

 We can even deprotonate an sp³ C—H alpha to oxygen if there is an electronwithdrawing group on the oxygen:

Lithiation α to Heteroatoms: Nitrogen

• We can also deprotonate sp³ C–H *alpha* to nitrogen if there is an electron-withdrawing group on the nitrogen. The *N*-Boc protecting / directing group works well:

Formation of R-Li: Dienolates


• We can also deprotonate other acidic hydrogens – e.g. enolate formation:

$$\begin{array}{c} NaH \\ pK_{a} \approx 11 \end{array}$$

Schlosser's base: "Superbase"

- The combination of two bases (an alkyllithium base and a group I metal alkoxide) gives rise to very powerful "superbases" that enable deprotonation at very weakly acidic positions.
- *E.g.* Schlosser's base, one of the most powerful bases known, will abstract protons from allylic or benzylic positions and will even deprotonate benzene:

Summary

In this lecture, you learnt:

- how to make organolithiums by deprotonating acidic protons, e.g.
 - enolates:

– alpha to heteroatoms:

$$X = O, NR$$
 $R \downarrow X$
 $EWG \qquad SBULi \qquad R \downarrow X$
 $EWG \qquad EI^{+} \qquad R \downarrow X$
 $EWG \qquad EI$

 how to combine an alkyllithium base and a group I metal alkoxide to generate "superbases" for the deprotonation of weakly acidic protons:

Practice questions

- 1. Provide curly arrow reactions mechanisms for the formation of product **A**, and suggest a structure for **A**.
- 2. Suggest reaction conditions and draw a curly arrow reaction mechanism for the formation of **B** from **A**.

Recap: R-Li and R-MgBr

Previously, you learnt that:

 organometallic reagents with electropositive metals have significant ionic character; they are highly reactive and unstable above cryogenic temperatures.

$$\begin{array}{ccc}
\delta^{+} & \delta^{-} \\
M - C & \equiv & \bigoplus_{M} \Theta_{C}
\end{array}$$

$$M = Li, MgX$$

they are nucleophilic on carbon and react with electrophiles:

$$EI^{+}$$

$$M - C \longrightarrow EI - C \longrightarrow EI$$

they are strong bases and easily destroyed by weak acids, water and protic solvents:

Lecture 4: Organocuprate Chemistry

Organocuprate (copper) chemistry

Learning outcomes

In this lecture, you will learn:

- how to make organocuprate reagents;
- how the reactivity of organocuprate reagents differs from Grignard and organolithium reagents.

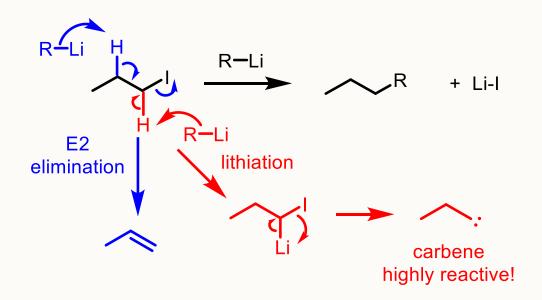
Recommended Reading: Clayden, Organic Chemistry, Chapter 22

Synthesis of Organocuprates

- Organocuprates (organocopper reagents) can be made by transmetallation from an organolithium (or Grignard) and a copper salt.
- There are two types of organocuprates:
 - Lower-order cuprates (Gillman reagents)

Higher-order cuprates (Lipshutz reagents)

When making organocuprates, consider:


- Need to use aprotic solvents (THF or Et₂O).
- Unstable > 0 °C.
- Prepared and used "in situ".

 Organocuprates are "softer" nucleophiles and less basic than Grignard or organolithium reagents. This results in different reactivity.

Cuprate reactivity: Substitution reactions

- 1. Cuprates are less basic than Grignard (R-MgBr) and organolithium (R-Li) reagents
- Problem: Because Grignard and organolithium reagents are strong bases, they do not cleanly undergo S_N2 reactions with alkyl halides because of competing elimination reactions:

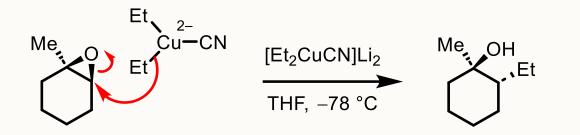
Cuprate reactivity: Substitution reactions

 Solution: Cuprates are less basic and undergo clean S_N2 reactions with alkyl halides or pseudohalides:

$$\begin{array}{c}
X & \frac{R_2Cu(CN)Li_2}{THF, -78 \text{ °C}}
\end{array}$$

X = I, CI, Br, OTs, OTf

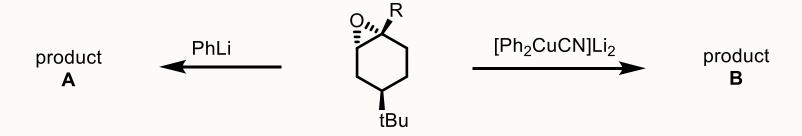
- Only one R-group is transferred. CN group always stays on Cu.
- S_N2: inversion of stereochemistry.


pseudohalides:

$$R-OTf = R-O-S-CF_3$$
triflate

Cuprate reactivity: Ring-opening of epoxides

 Similarly, epoxides are cleanly ring-opened with cuprates, while Grignards or oganolithiums are too basic and lead to elimination reactions:



Epoxide opening is selective for the less hindered position (sterics).

Question

Predict the products (A and B) of the following two reactions:

Cuprate reactivity: Conjugate addition

- 2. Cuprates are "softer" than Grignards and organolithium reagents.
- Grignard reagents are hard nucleophiles: direct 1,2-addition to α,β -unsaturated ketones:

Organocuprates are soft nucleophiles: conjugate 1,4-addition:

Hard reacts with hard, soft reacts with soft

Hard and soft nucleophiles

Hard reacts with hard, soft reacts with soft

- Hard nucleophiles/electrophiles: small, high charge density e.g. RO⁻, H₂N⁻, R₂C=O, MeLi, MeMgBr
- → reactivity dominated by electrostatic interactions
- Soft nucleophiles / electrophiles: delocalised charge in large, 'diffuse' orbitals e.g. RS⁻, I⁻, R₃P, α,β-unsaturated ketones and other conjugated alkenes, Me₂CuLi
- → reactivity dominated by HOMO–LUMO interactions

Question

1. Each of the molecules below has a hard and a soft electrophilic centre. Identify them.

2. Are the following nucleophiles hard or soft? Where will they react with the two molecules in question 1?

Cuprate reactivity: Conjugate addition

- Cuprates will cleanly displace a wide range of allyl substituted leaving groups.
- Soft nucleophiles: S_N2' reactions

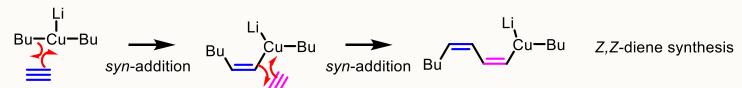
e.g.

$$\begin{array}{c} \text{Et}_{\text{Cu-Li}} \\ \text{Et}_{\text{Cu-Li}} \\ \hline \\ \text{THF, -78 °C} \end{array}$$

hard reacts with hard

Summary

In this lecture, you learnt:


how to make organocuprates by transmetallation from R–Li or R–MgBr

- how the reactivity of organocuprates differs from R–Li and R–MgBr:
 - they are less basic and therefore less prone to elimination reactions:

– they are soft nucleophiles and react with soft electrophiles:

they undergo syn-selective carbocupration reactions with alkenes:

Practice questions

1. Predict the outcome of the following reactions:

(b) product?
$$Et_2CuCNLi_2$$
 OTs $EtLi$ product?

(c) product?
$$\frac{\text{Me}_2\text{CuCNLi}_2}{\text{me}_2\text{CuCNLi}_2}$$
 product?

(d)
$$Me$$
 Me_2CuLi product?

Course Overview

Part 1: Stoichiometric Organometallic Chemistry (Clayden, Chapter 9)
So far, we have covered stoichiometric reactions (≥ 1 equivalent of metal required):

$$EI^{+}$$

$$M \rightarrow R$$

$$EI \rightarrow R$$

$$EI \rightarrow R$$

$$+ M \rightarrow X$$

$$\text{then } H^{+}$$

$$\text{metal salt by-product}$$

$$\text{(waste)}$$

Part 2: Transition Metal Catalysis (Clayden, Chapter 40) In the next section, we will learn about <u>catalytic</u> reactions with palladium:

$$R^1-X + Y-R^2 \xrightarrow{Pd (cat.)} R^1-R^2 + Pd (cat.)$$
recovered

Lecture 5 + 6: Introduction to Palladium Catalysis

Introduction to Palladium Catalysis

Learning outcomes

In the next two lectures, you will learn:

- The effect of ligands on stability and reactivity of palladium catalysts;
- The effect of oxidation state and valence electron count on the reactivity of palladium catalysts;
- The three fundamental reactions that make up the catalytic cycle of the Suzuki cross-coupling reaction: oxidative addition, transmetallation and reductive elimination.
- How the coupling partner can be changed to give other cross-coupling reactions using the same fundamental steps.

Recommended Reading: Clayden, Organic Chemistry, Chapter 40

Transition metal catalysis

- Some of the most commonly used reactions in research and industry make use of transition metals.
- Four Nobel prizes have been awarded for work in this area:

2001	Asymmetric	synthesis	(Rh,	Ru,	Ti)
	<i>y</i>		•	•	,

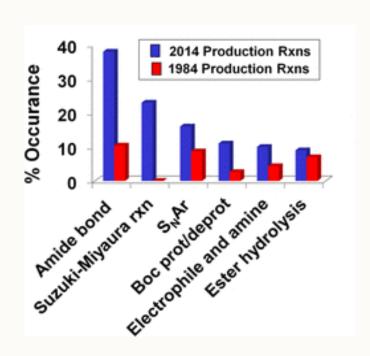
2005 Metathesis (Mo, Ru) [Stockman lectures]

2010 Cross-coupling (Pd) [these lectures]

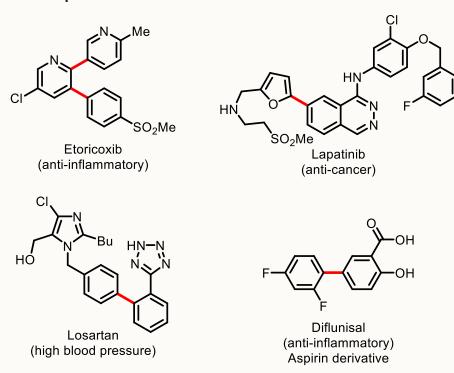
2022 Click chemistry (Cu)

 This course will focus on palladium-catalysed cross-coupling reactions. These reactions are powerful transformations for C–C bond formation:

$$R^1-X + Y-R^2 \xrightarrow{Pd (cat.)} R^1-R^2 + Pd (cat.)$$

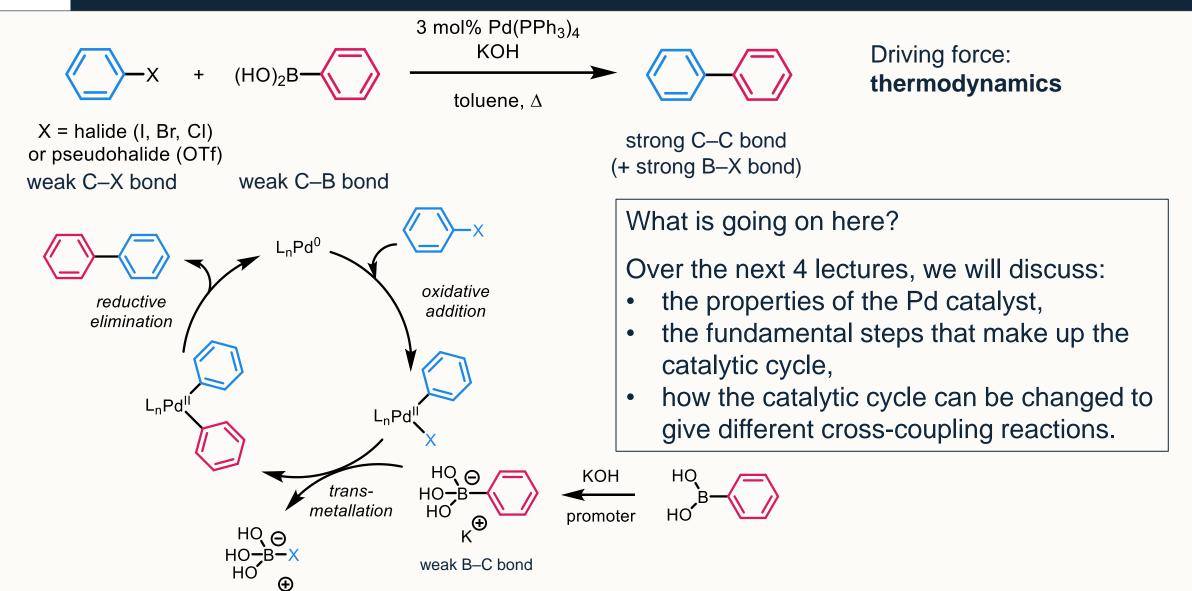


Introduction to Pd cross-coupling chemistry: The Suzuki reaction


The Suzuki reaction is the second most common reaction in medicinal chemistry.

$$R$$
 \rightarrow Br + $(HO)_2B$ \rightarrow A \rightarrow

Examples of pharmaceuticals made via Suzuki reactions:


Source: J. Med. Chem. 2016, 59, 4443

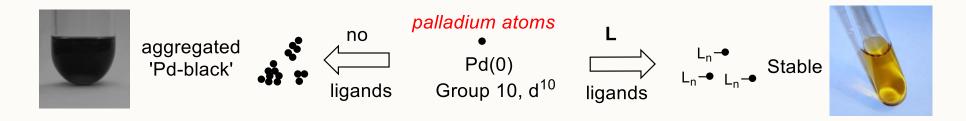
strong B-X bond

Pd cross-coupling reactions: Mechanism of the Suzuki reaction

Pd cross-coupling reactions: Mechanism of the Suzuki reaction

- The driving force for most Pd catalysed cross-coupling reactions is thermodynamics:
 the formation of stronger bonds from weaker bonds.
- A rough guide to bond strengths:
 - C–C and C–H bonds are strong
 - C–X / C–M bonds are weak
 - M–X bonds are strong

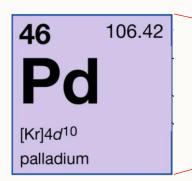
C-Halogen bonds ≈ 55–100 kcal/mol (C-I 55 < C-Br 65 = C-OTf 65 < C-Cl 100)


Pd–C bonds ≈ 50 kcal/mol Pd–Hal bonds ≈ 70 kcal/mol

M–C bonds ≈ 50 kcal/mol

M–Hal bonds ≈ 100 kcal/mol

• Ligands are required to stabilise the metal catalyst:



 The nature of the ligands affects the oxidation state and number of electrons of a metal complex and therefore its reactivity.

 The oxidation state and number of electrons of a metal complex determine its reactivity.

oxidation state = 0 - (formal charge of ligands)

4	5	6	7	8	9	10	11	12
22	23	24	25	26	27	28	29	30
Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Z n
40	41	42	43	44	45	46	47	48
Z r	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
72	73	74	75	76	77	78	79	80
Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
104	105	106	107	108	109	110	111	112
Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn

electron count = (Pd valence electrons) + (electrons donated by ligands) = (group number – oxidation state) + (electrons donated by ligands)

Ligand	Formal charge	Electrons donated
Anionic ligands (Cl-, -CN, -OR)	–1	2
Neutral σ-donor ligands (:PR ₃ , :NR ₃ , :OR ₂ , :SR ₂ , :CO, :NCR)	0	2
alkyl, aryl (η¹)	–1	2
alkene (η²)	0	2

Note: We've (briefly) seen oxidation states before:

$$Ph-Br \xrightarrow{Mg^0} Ph^Mg^{||}_Br$$

Consider some common palladium pre-catalysts:

$$OS = 0 - (ligand charge)$$

 $e^- = (10 - OS) + (ligand e^-)$

```
formal charge: 0 electrons: 2

Ph_3P
Pd
PPh_3
Ph_3P
Ph_3P
Ph_3

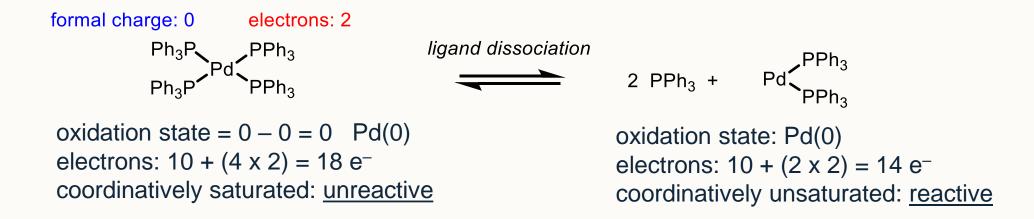
oxidation state = 0 - 0 = 0 Pd(0) electrons: 10 + (4 x 2) = 18 e<sup>-1</sup> coordinatively saturated
```

```
formal charge: 0 formal charge: -1 electrons: 2 electrons: 2

Ph<sub>3</sub>P Pd Cl
Ph<sub>3</sub>P Pd Cl
oxidation state = 0 - (2x - 1) = 2 Pd(II) electrons: (10 - 2) + (4 \times 2) = 16 e-coordinatively saturated
```

• 18- and 16-electron complexes are coordinatively saturated and unreactive. Reactive, unsaturated (14 e⁻) complexes are formed by ligand dissociation in solution.

Question


Determine the Pd oxidation state and electron count in the following complex:

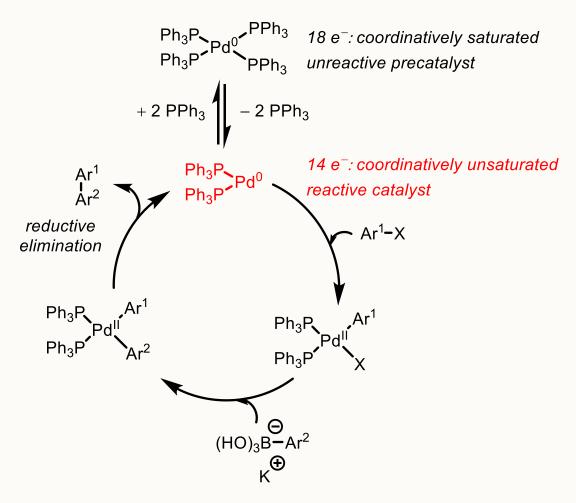
$$OS = 0 - (ligand charge)$$

 $e^- = (10 - OS) + (ligand e^-)$

Ligand	Formal charge	Electrons donated
Anionic ligands (Cl ⁻ , -CN, -OR)	– 1	2
Neutral σ-donor ligands (:PR ₃ , :NR ₃ , :OR ₂ , :SR ₂ , :CO, :NCR)	0	2
alkyl, aryl	– 1	2

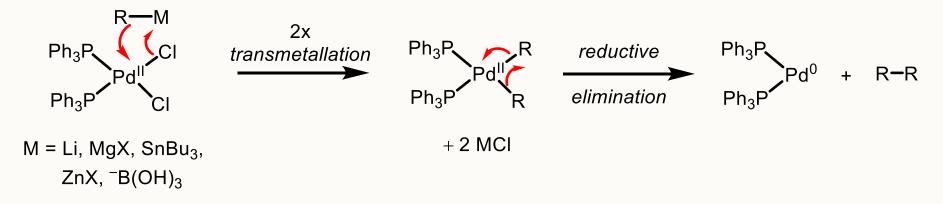
• 18- and 16-electron complexes are coordinatively saturated and unreactive. Reactive, unsaturated (14 e⁻) complexes are formed by ligand dissociation in solution:

Pd(0) complexes (d¹⁰) are electron-rich and highly nucleophilic.


• 18- and 16-electron complexes are coordinatively saturated and unreactive. Reactive, unsaturated (14 e⁻) complexes are formed by ligand dissociation in solution:

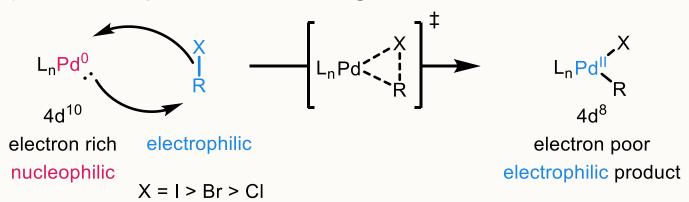
```
formal charge: 0 formal charge: -1 electrons: 2 electrons: 2 -1 electrons: 2 -1 electrons: 2 -1 electrons: 2 -1 electrons: -1 ele
```

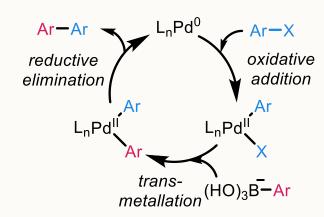
Pd(II) complexes (d⁸) are electron-poor and highly electrophilic.


 The first step in a catalytic cycle is usually formation of the reactive catalyst from an unreactive pre-catalyst:

Other ways of generating active Pd(0) catalysts

- A reactive Pd(0) catalyst can also be generated from Pd(II) pre-catalysts:
- Option 1: Reduction of L_nPdX_2 (X = halide or pseudohalide) with an organometallic (M–R is often the coupling partner in cross-coupling reactions, present in excess):

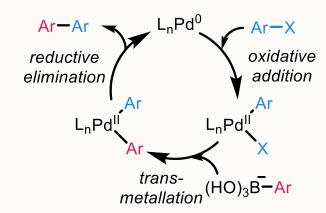



Option 2: Reduction of Pd(OAc)₂ with phosphines:

Fundamental reactions: Oxidative addition

• Pd(0) is nucleophilic and undergoes oxidative addition reactions:

- The reaction requires two free coordination sites on Pd.
- Selective *cis*-addition of X and R to the metal centre (concerted reaction).
- The metal is oxidised from Pd(0) to Pd(II), hence the name oxidative addition.
- It is difficult to show transition metal reactivity with curly arrows. For a 3D animation of the process, see: https://www.chemtube3d.com/suzuki/
- We have seen oxidative addition before: Grignard reagents (lecture 1).


$$\begin{array}{ccc}
Mg^0 & & & R X \\
R-X & Et_2O & Et_2O & OEt_2
\end{array}$$

Fundamental reactions: Reductive elimination

 Oxidative addition is reversible. The reverse process is called reductive elimination:

$$L_n Pd^0$$
 + X oxidative addition $L_n Pd^{||}$ X $L_n Pd^{||}$ Y

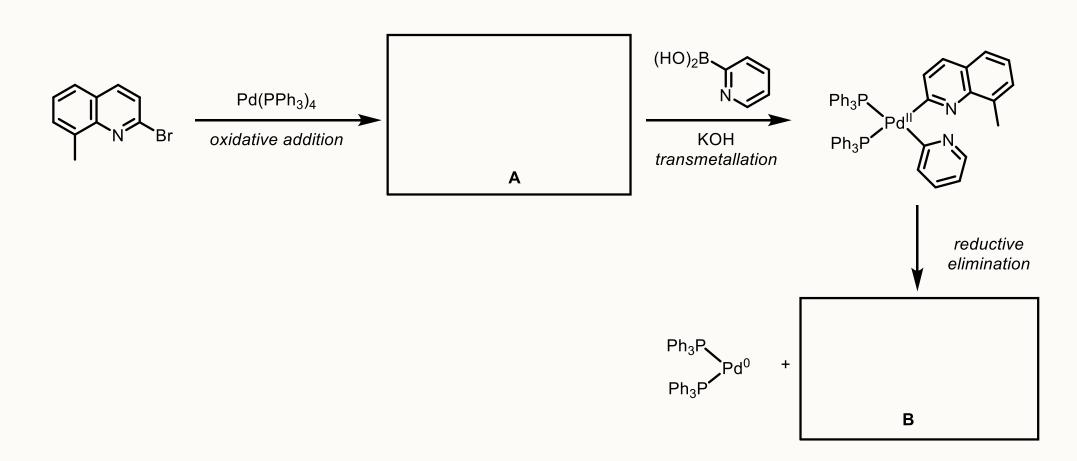
- Reductive elimination removes (eliminates) metal atoms and forms new single bonds (X–Y). The metal is reduced from Pd(II) to Pd(0) in the process.
- The substituents undergoing reductive elimination (X and Y) need to be *cis* to each other:

ligands *cis*: reductive elimination occurs.

ligands *trans*: reductive elimination does not occur.

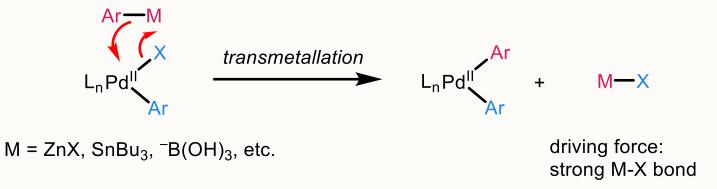
Fundamental reactions: Reductive elimination

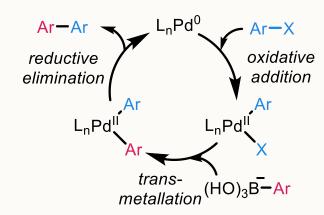
- Driving force: thermodynamics (formation of stronger bonds).
 - Reductive elimination is easy and fast when strong bonds are formed:


— It does not occur if the new bond would be weak:

$$L_n P d^{||} X \qquad \qquad \qquad \qquad \qquad L_n P d^0 \qquad + \qquad X \\ X = CI, Br, OTf \qquad \qquad \qquad weak X-X bond$$

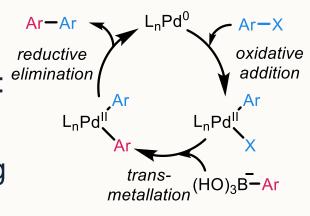
Question


Draw the missing intermediates / products **A** and **B**:



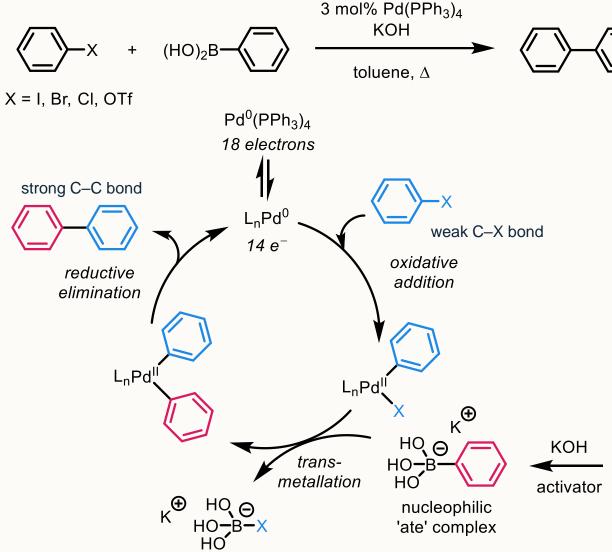
Fundamental reactions: Transmetallation

 Transmetallation transfers a carbon ligand from one metal (e.g. Li, Mg, Cu, Zn, B, Si, Sn) to another metal (e.g. Pd).



- This step is important, because it allows the transfer of different groups onto palladium which can then be coupled together in the reductive elimination step.
- We have seen transmetallation before: tin-lithium exchange (lecture 2).

Fundamental reactions: Transmetallation


- What is the role of the base in the Suzuki reaction?
- Boronic acids are not very nucleophilic (C–B bond not very polarised): transmetallation is slow.
- The base acts as an activator, increasing nucleophilicity by generating a negatively charged 'ate' complex, and speeds up transmetallation:

Other activators can be used, e.g. CsF (F- has a very high affinity for B).

Summary: The Suzuki reaction

strong B-X bond

- Driving force: thermodynamics (formation of strong C–C and B–X bonds).
- Active catalyst is coordinatively unsaturated.
- Pd(0) is nucleophilic (electron-rich) and undergoes oxidative addition.
- Pd(II) is electrophilic (electron-poor) and undergoes reductive elimination.
- An activator (HO⁻ or F⁻) is required to increase the reactivity of the boronic acid coupling partner for transmetallation.

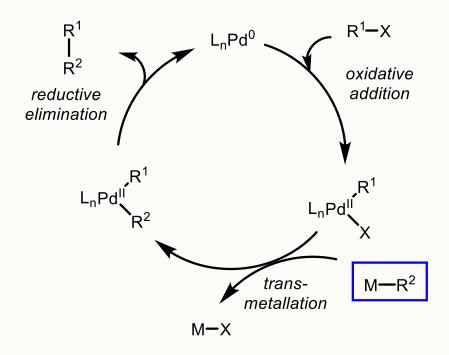
Boronic acids: the coupling partners in Suzuki reactions

- Boronic acids and esters are readily available reagents that can be made in different ways.
 - Transmetallation from organolithium reagents:

R-Li
$$\xrightarrow{B(OMe)_3}$$
 R-B(OMe)₂ $\xrightarrow{H_3O^+}$ R-B(OH)₂ \xrightarrow{fast} hydrolysis

Hydroboration of alkynes and alkenes:

Pd cross-coupling (Miayura borylation):


$$X = Br, I, OTf$$
 $A = Br, I, OTf$
 $A = Br, I,$

• But if the required boronic acid is not available, we can do a different cross-coupling reaction.

Alternative coupling partners

• If the boronic acid / ester coupling partner for a Suzuki reaction is not available, a different transmetallating reagent can be used:

 $M = SnBu_3$ Stille reaction M = ZnX Negishi reaction M = Li Murahashi reaction $M = SiMe_3$ Hiyama reaction

Alternative coupling partners

	Advantages	Disadvantages
Suzuki (M = $B(OH)_2$)	Very reliable, good substrate scope. Boronic acids readily available.	Activation necessary.
Hiyama (M = SiMe ₃)		Similar reactivity to R–B(OH) ₂ : activation necessary.
Stille (M = SnBu ₃)	Good functional group compatibility. More reactive than R–B(OH) ₂ : no activator necessary.	Very toxic!
Negishi (M = ZnX)	Good functional group compatibility. More reactive than R–B(OH) ₂ : no activator necessary.	Oganozinc species are very air and moisture sensitive.
Murahashi (M = Li)	More reactive than R–B(OH) ₂ : no activator necessary.	Organolithium species are incompatible with many functional groups.

Example in medicinal chemistry

Practice questions

1. Determine the Pd oxidation state and electron count of the following complexes:

2. Draw a catalytic cycle for the following Suzuki reaction:

Practice questions

3. Draw the product of the following Suzuki reactions:

MeO
$$\stackrel{\text{Br}}{\longleftarrow}$$
 + $\stackrel{\text{B(OH)}_2}{\longleftarrow}$ $\stackrel{\text{PdCl}_2(\text{dppf})}{\longleftarrow}$ $\stackrel{\text{Na}_2\text{CO}_3}{\longleftarrow}$ water, toluene 90 °C, 1 h

Lectures 5+6: Practice question 3

Draw the product of the following Suzuki reactions:

$$\begin{array}{c} \text{MeO} & \text{Br} \\ \text{N} & \text{CI} \end{array} \begin{array}{c} \text{PdCl}_2(\text{dppf}) \\ \text{Na}_2\text{CO}_3 \end{array} \\ \text{water, toluene} \\ \text{90 °C, 1 h} \end{array}$$

more reactive than C-Cl bonds

Alkenes can also be coupled in Suzuki reactions.

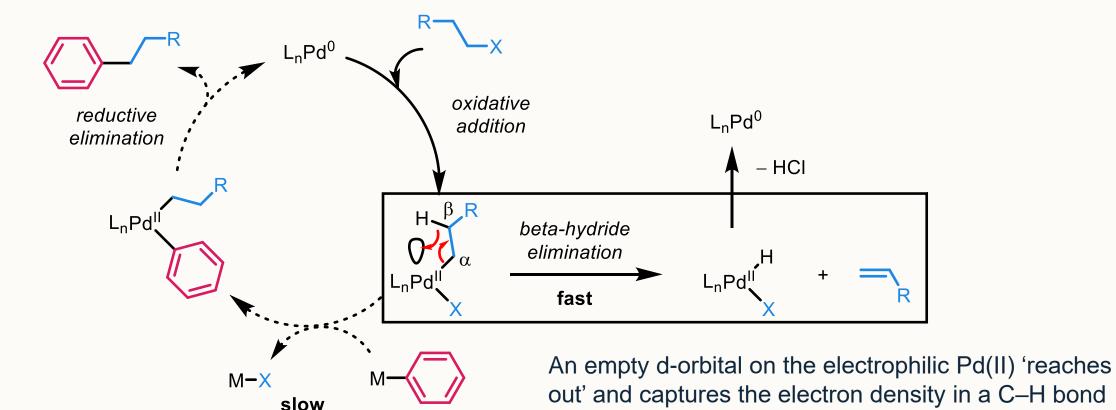
But: Alkyl halides are not generally successful coupling partners in Suzuki reactions.

Lecture 7: The Heck reaction

The Heck reaction

Learning outcomes

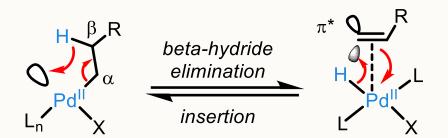
In this lecture, you will learn about:


- two more fundamental reactions in palladium catalysis: beta-hydride elimination and ligand migration / carbometallation;
- their role in the Heck reaction.

Recommended Reading: Clayden, Organic Chemistry, Chapter 40

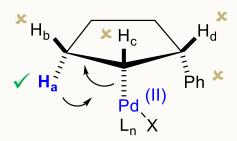
Fundamental reactions: β-Hydride elimination

Alkyl halides (R(sp³)–X) are rarely used in Pd cross-coupling reactions because the Pd(II) σ–alkyl complex rapidly decomposes by beta-hydride elimination:



transmetallation

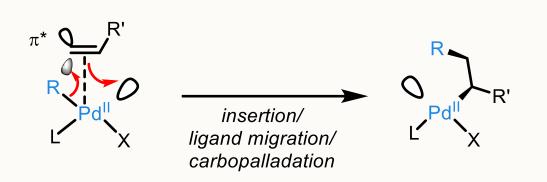
two atoms away (beta) from the palladium.



Fundamental reactions: β-Hydride elimination

For a 3D animation of this process, see: https://www.chemtube3d.com/pdheck/

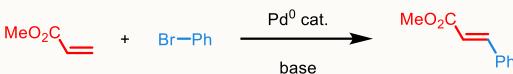
- A cis free coordination site on palladium is required.
- Palladium is not oxidised or reduced in this process.
- β -Hydride elimination is **syn** specific, *i.e.* only H_a is eliminated in this complex:



β-Hydride elimination is reversible. The reverse process is called insertion.

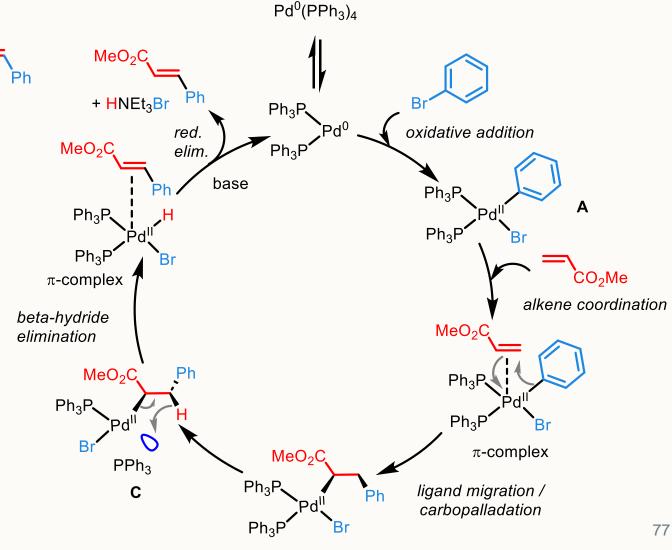
Fundamental reactions: Insertion, Carbometallation / Ligand migration

 Carbons (R groups) can undergo insertion reactions as well. In this case, we call the process ligand migration or carbometallation.



- Pd is not oxidised or reduced.
- The reaction is syn-specific (R and Pd add to the same face of the alkene).
- Regioselectivity: R attaches to the less substituted end of the double bond (to avoid steric clash with the substituents on the alkene).
- The reverse process does not occur readily.
- We have seen carbometallation before: carbocupration (lecture 4).

The Heck Reaction


β-Hydride elimination and carbopalladation are important steps in the Heck reaction:

A: Pd^{||} is electrophilic: coordinates to electron-rich alkene.

B: Carbopalladation: Pd-C and C-Ph bonds form at the same time, so these groups are *cis* to each other, but Pd and H must be cis for β -H elimination to occur: rotate this C-C bond.

C: Dissociation of PPh₃ gives a free coordination site (empty d orbital) on Pd required for β -H elimination.

The Heck reaction: An example from medicinal chemistry

Questions

1. What is the product of the following Heck reaction:

2. Propose a reagent for the following Heck reaction:

Summary

In this lecture, you learnt:

that Pd(II) σ–alkyl complexes undergo rapid beta-hydride elimination:

that electrophilic Pd(II) complexes can react with alkenes:

how these two processes play a key role in the Heck cross-coupling reaction:

$$MeO_2C$$
 + $Br-Ph$ Pd^0 cat. MeO_2C Ph

Practice questions

1. Draw the catalytic cycle for the following Heck reaction:

2. Identify the products of the following Heck reactions:

a)
$$Pd(OAc)_2, NEt_3$$

$$100 °C$$
b) OTf
+ OTf
+ OTf

$$DMF, 70 °C$$

Lecture 8: The Buchwald-Hartwig reaction

The Buchwald-Hartwig reaction

Learning outcomes

In this lecture, you will learn:

- how to form C–N bonds using palladium catalysis,
- how this reaction compares to S_NAr chemistry.

Recommended Reading: Clayden, Organic Chemistry, Chapter 40

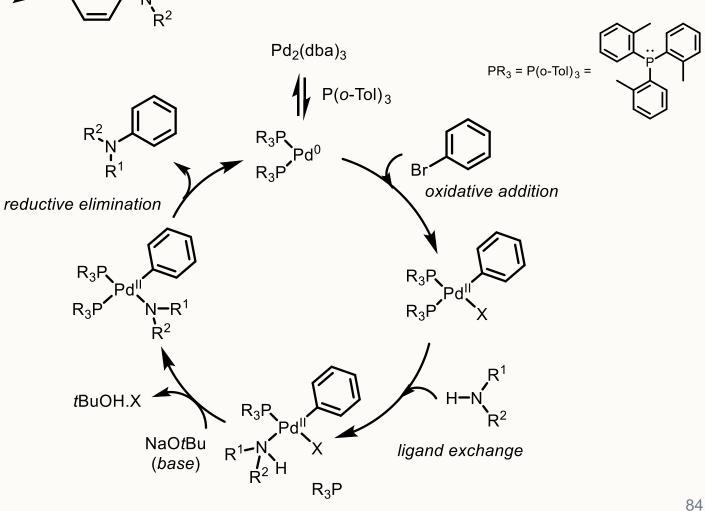
Recap: Pd catalysed cross-coupling reactions

- The reactions we have seen so far, have been C—C cross-coupling reactions:
 - Suzuki reaction:

$$(HO)_2B \longrightarrow R$$

$$(HO)$$

Heck reaction:


$$\longrightarrow$$
 X + \nearrow R $\xrightarrow{Pd(OAc)_2}$ \longrightarrow PPh₃, NEt₃

 But it is also possible to form carbon—heteroatom bonds through Pd cross-coupling reactions.

The Buchwald-Hartwig reaction: C-N formation

- Ligand exchange occurs because amines are good ligands for palladium.
- The same reaction can be used to couple amides to aromatic rings.

The Buchwald-Hartwig reaction: C-N formation

 When alkyl amines are used in this reaction, competing beta-hydride elimination can lead to unwanted by-products:

$$\begin{array}{c|c} R_3P & & beta \ hydride \\ \hline R_3P & H & R^2 \\ \hline \end{array}$$

• Chelating phosphine ligands can suppress *beta*-hydride elimination by blocking the vacant coordination site required for this process, e.g. dppf:

$$PdCl_{2}(dppf) \longrightarrow Pd^{0} \longrightarrow Pd$$

Question

Draw the product of the following Buchwald-Hartwig cross-coupling reaction:

$$O_2N$$
 CI
 O_2N
 O_2N
 O_3N
 O_4N
 $O_$

The molecule below is a drug to control blood clotting. Identify the bonds that could be made via Buchwald-Hartwig cross coupling.

$$F_3C$$
 N
 N
 CO_2H

Application in medicinal chemistry

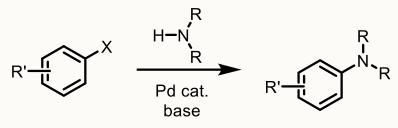
CO₂Me

In the med chem synthesis of this drug, one Pd-catalysed step was used:

nucleophilic aromatic substitution: no Pd necessary

$$\begin{array}{c} Pd_2(dba)_3 \\ EiHMDS \\ \hline F_3C \\ \hline \\ Buchwald-Hartwig \\ \hline \\ F_3C \\ \hline \\ Pr_2NEt \\ \hline \\ nucleophilic aromatic \\ substitution: no Pd necessary \\ \hline \\ HN \\ \hline \\ Pr_2NEt \\ \hline \\ Pr_2NEt \\ \hline \\ Pr_2NEt \\ \hline \\ Reductive amination \\ \hline$$

ČO₂H


Pd catalysis vs. S_NAr

The previous slide showed that the Buchwald-Hartwig coupling achieves the same as nucleophilic aromatic substitution (S_NAr). So what are the differences?

$$R' \xrightarrow{\text{II}} X \xrightarrow{\text{Base}} R' \xrightarrow{\text{II}} R$$

Nucleophilic aromatic substitution:

- Leaving group: F > Cl > Br > I
- Regiochemistry: There must be an electronwithdrawing group (R' = F, NO₂, CF₃, etc.) ortho or para to the leaving group
- No expensive Pd catalyst required.

Buchwald-Hartwig

Buchwald-Hartwig reaction:

- Leaving group: I > Br > Cl >> F
 lodide is the best at the oxidative addition step, but chloride works as well (aryl chlorides are cheaper).
- Regiochemistry: Any substitution pattern (R') works.

Summary

In this lecture, you learned how to form C–N bonds using palladium catalysis and when this is a powerful alternative to S_NAr chemistry.

Buchwald-Hartwig

Next lecture: workshop.

Next week, we will work through the practice questions together, and I will answer any questions you have on the material.

Practice questions

1. Draw the catalytic cycle for the following Buchwald-Hartwig reaction:

2. Identify the products of the following Heck reactions:

a)
$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{H} \end{array} \begin{array}{c} \text{H} \\ \text{H} \end{array} \begin{array}{c} \text{Pd(OAc)}_2 \\ \text{XantPhos (PR}_3 \text{ ligand)} \\ \text{Cs}_2\text{CO}_3 \end{array}$$

Practice questions

- 3. The two bonds highlighted in red in the anti-fungal drug (Sopranox) below can be made via Pd-catalysed Buchwald-Hartwig reactions.
- a) Suggest a three-step synthesis for this molecule (reagents and conditions for each step).
- b) Why is it not possible to use an S_N Ar strategy for the synthesis of this molecule?